Activités mentales

Banque de diapositives sur les polynômes

Niveau envisageable: 2^{nde} / 1^{ère} / Term

Les diapositives suivantes visent exclusivement le travail mental.

Inscrire sur votre feuille uniquement la ou les réponses attendues.

- Parmi les fonctions suivantes, lesquelles sont des fonctions polynômes du second degré ?
 - A définie par A(x) = 3x + 2
 - B définie par $B(x) = 3 x^2 + 2 x 4$
 - C définie par $C(x) = x^2 + 3x (2 + x^2)$
 - D définie par $D(x) = x^2 5x + 4x^3$
 - E définie par $E(x) = x^2 (1-x)$
 - F définie par $F(x) = (x 3)^2$

Quelle est la forme développée de $(4x - 5)^2$?

A)
$$4x^2 - 25$$

B)
$$4x^2 + 40x - 25$$

C)
$$4x^2 + 40x + 25$$

D)
$$4x^2 - 40x + 25$$

E)
$$4x^2 - 20x + 25$$

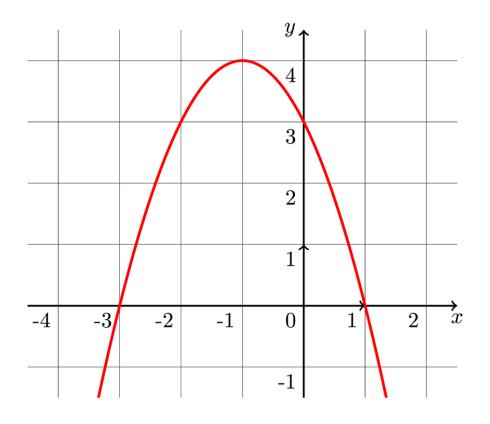
E)
$$16x^2 - 25$$

F)
$$16x^2 + 40x - 25$$

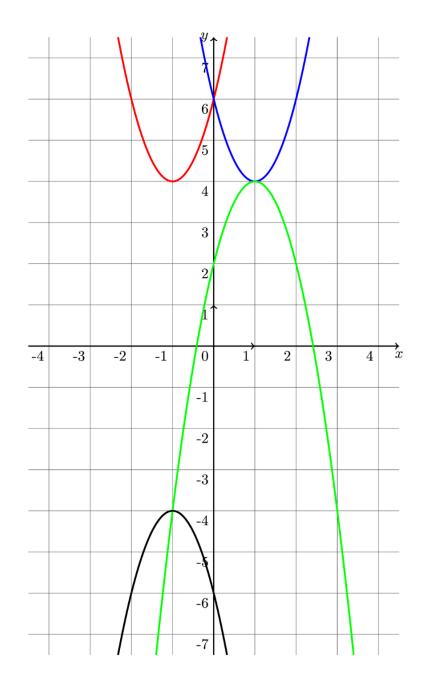
G)
$$16 x^2 + 40 x + 25$$

H)
$$16 x^2 - 40 x + 25$$

I)
$$16x^2 - 20x + 25$$


Associer à la parabole ci-contre la bonne forme canonique :

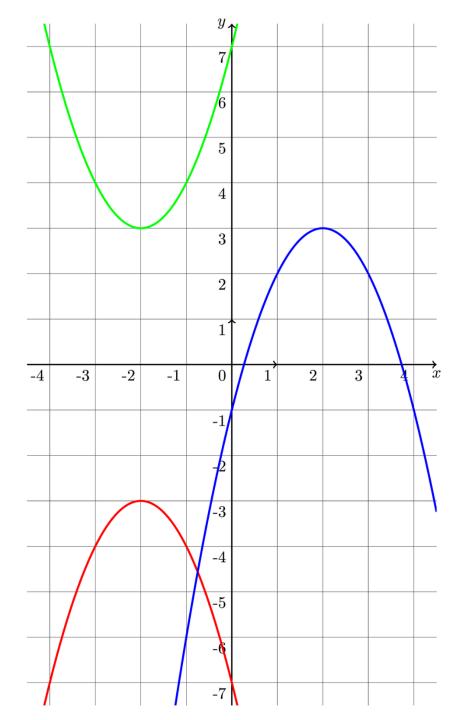
•
$$A(x) = -(x-1)^2 + 4$$


•
$$B(x) = (x-1)^2 + 4$$

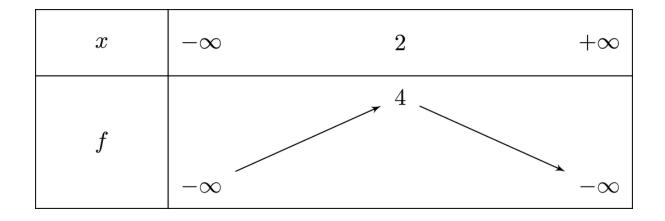
•
$$C(x) = (x+1)^2 + 4$$

•
$$D(x) = -(x+1)^2 + 4$$

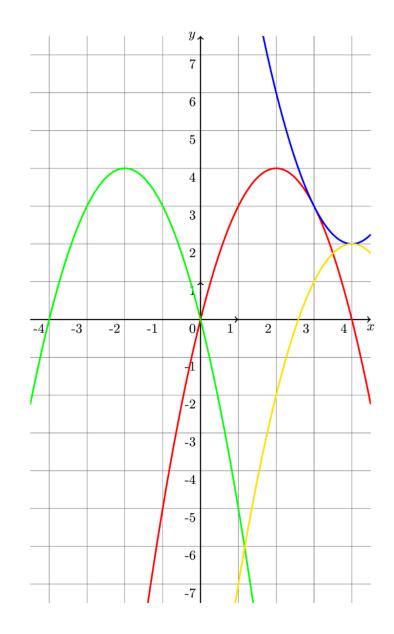
Quelle parabole représente la fonction fdéfinie par $f(x) = 2(x-1)^2 + 4$?



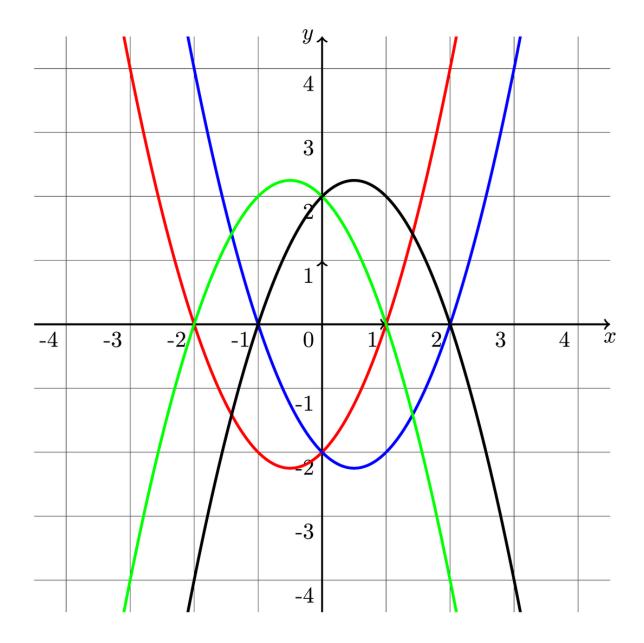
Associer chacune des fonctions à la parabole qui la représente .


•
$$A(x) = -(x+2)^2 - 3$$
 Couleur : ?

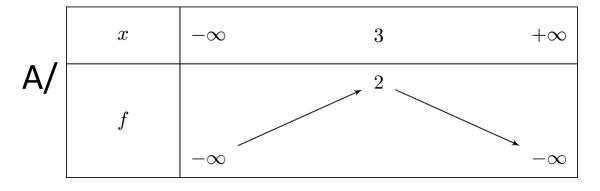
•
$$B(x) = -(x-2)^2 + 3$$
 Couleur : ?

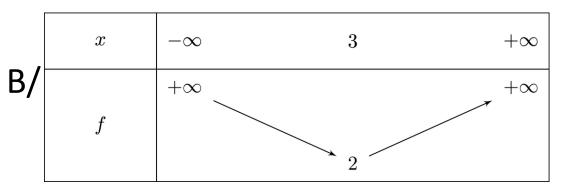

•
$$C(x) = (x + 2)^2 + 3$$
 Couleur : ?

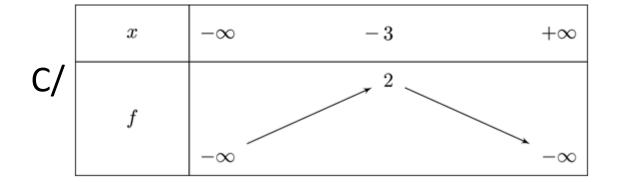
Associer au tableau de variations ci-dessous la bonne courbe

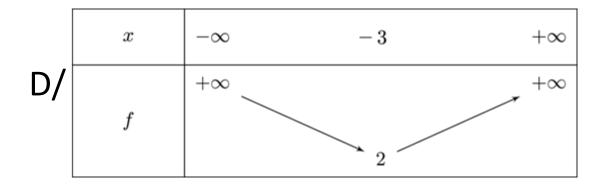

Couleur: ?

La fonction A est définie sur IR par

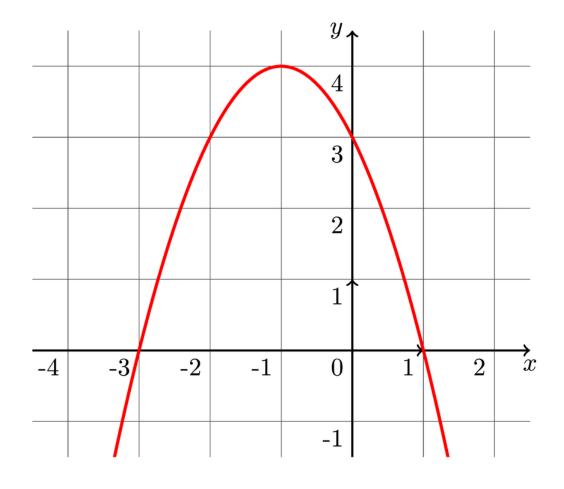

$$A(x) = -(x - 2)(x + 1)$$

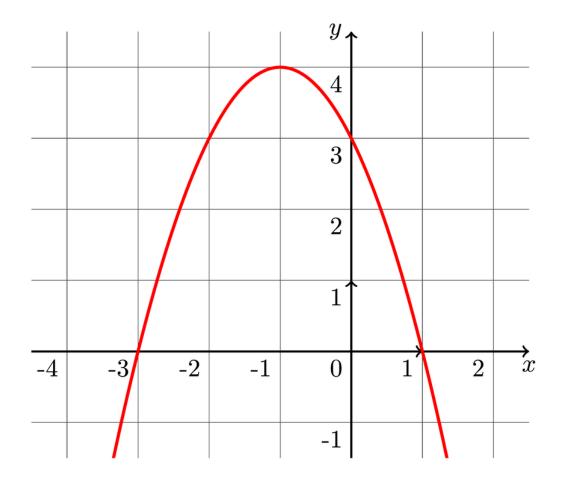

Quelle parabole représente A?




2^{nde} / 1^{ère} / Term

Quel est le tableau de variations de f définie sur IR par $f(x) = -4(x-3)^2 + 2$?




f définie par $f(x) = ax^2 + bx + c$ est représentée ci-contre.

Parmi $a, b \ et \ c$, le(s)quel(s) est (sont) positif(s) ?

f définie par $f(x) = a(x - \alpha)^2 + \beta$ est représentée ci-contre. Son discriminant est noté Δ .

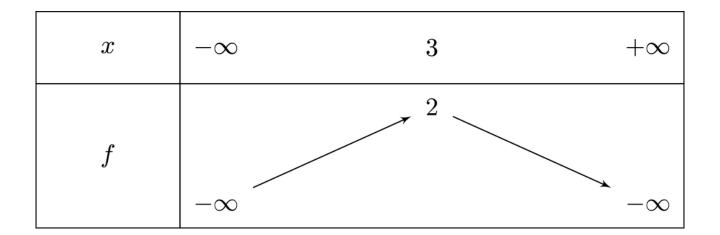
Parmi α , β et Δ , le(s)quel(s) est (sont) positif(s) ?

Soit f la fonction définie par $f(x) = -x^2 + 4x - 3$ On connait la forme canonique de $f(x) : -(x-2)^2 + 1$ On connait la forme factorisée de f(x) : -(x-1)(x-3)

Donner le ou les antécédents de 0 par la fonction f.

Soit f la fonction définie par $f(x) = -x^2 + 4x - 3$ On connait la forme canonique de $f(x) : -(x-2)^2 + 1$ On connait la forme factorisée de f(x) : f(x) = -(x-1)(x-3)

Donner l'image de 0 par la fonction f.


La parabole représentant la fonction f définie sur IR par f(x) = 3(x-3)(x+3) coupe **l'axe des abscisses** en :

- 3 points
- 2 points
- 1 point
- 0 point
- On ne peut pas conclure sans la représentation graphique

La parabole représentant la fonction f définie sur IR par f(x) = 3(x-3)(x+3) coupe **l'axe des ordonnées** en :

- 3 points
- 2 points
- 1 point
- 0 point
- On ne peut pas conclure sans la représentation graphique

f est une fonction trinôme du second degré Donner le signe de a et de Δ .

f est une fonction trinôme du second degré Donner le signe de a et de Δ .

x		1		2		
f(x)	_	0	+	0	_	

f est une fonction trinôme du second degré définie sur IR par : f(x) = -(x-1)(x-2)

Donner le signe de a et de Δ .

Une solution de l'équation $z^2 + 8 = 0$ est :

$$a = 2\sqrt{2}$$

$$b = -2\sqrt{2}$$

$$c = 2i\sqrt{2}$$

$$d = -2i\sqrt{2}$$

$$e = -4$$

Le trinôme $z^2 - 86z + 2290$ a pour racine 43 + 21i. Une autre racine sera :

$$a = 43 - 21i$$
 $b = -43 + 21i$
 $c = -43 - 21i$
 $d = 21 + 43i$

Ecrire un trinôme du second degré dont les deux racines complexes sont respectivement i et -i.

$$(z^2-2)(z^2-1) \times z^2 \times (z^2+1)(z^2+2) = 0.$$

Combien de solutions réelles possède cette équation ?

$$(z^2-2)(z^2-1) \times z^2 \times (z^2+1)(z^2+2) = 0.$$

Combien de solutions complexes possède cette équation ?

L'équation 4(x-2)(-x+3) = 0 a pour solution(s) réelle(s)

- A) Les nombres réels 0 et 3
- B) Uniquement le nombre réel 2
- C) Les nombres réels -2 et -3
- D) Les nombres réels 2 et 3

La fonction
$$f$$
 est définie sur IR par : $f(x) = (x - 1)(x + 2)$.

« La courbe représentative de f coupe l'axe des abscisses en un seul point. »

La fonction
$$f$$
 est définie sur IR par : $f(x) = (x - 1)(x + 2)$.

« La courbe représentative de *f* coupe l'axe des ordonnées en deux points. »

La fonction
$$f$$
 est définie sur IR par : $f(x) = (x - 1)(x^2 + 2)$.

« La courbe représentative de f coupe l'axe des abscisses en un seul point. »

La fonction
$$f$$
 est définie sur IR⁺ par : $f(x) = (x - 1)(x + 2)$.

« La courbe représentative de f coupe l'axe des abscisses en un seul point. »